Copied to
clipboard

G = C24.8D10order 320 = 26·5

8th non-split extension by C24 of D10 acting via D10/C5=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C24.8D10, C2.5(D4xDic5), C10.117(C4xD4), C22:C4:5Dic5, C22.99(D4xD5), C2.5(D10:D4), C10.30(C4:D4), C23.7(C2xDic5), (C2xDic5).151D4, (C22xC4).307D10, C10.32(C4.4D4), C22.52(C4oD20), (C23xC10).34C22, C5:7(C24.C22), C23.281(C22xD5), C10.10C42:31C2, C10.63(C42:C2), C10.14(C42:2C2), C2.6(D10.12D4), C22.47(D4:2D5), (C22xC20).343C22, (C22xC10).326C23, C2.6(Dic5.5D4), C2.7(C23.D10), C22.40(C22xDic5), C10.31(C22.D4), C2.8(C23.21D10), (C22xDic5).208C22, (C2xC4xDic5):23C2, (C5xC22:C4):14C4, (C2xC4:Dic5):11C2, (C2xC20).333(C2xC4), (C2xC10).320(C2xD4), (C2xC22:C4).14D5, (C2xC4).16(C2xDic5), (C2xC10).79(C4oD4), (C10xC22:C4).19C2, (C2xC23.D5).13C2, (C2xC10).280(C22xC4), (C22xC10).119(C2xC4), SmallGroup(320,578)

Series: Derived Chief Lower central Upper central

C1C2xC10 — C24.8D10
C1C5C10C2xC10C22xC10C22xDic5C2xC4xDic5 — C24.8D10
C5C2xC10 — C24.8D10
C1C23C2xC22:C4

Generators and relations for C24.8D10
 G = < a,b,c,d,e,f | a2=b2=c2=d2=1, e10=c, f2=cb=bc, ab=ba, ac=ca, eae-1=ad=da, faf-1=acd, bd=db, be=eb, bf=fb, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=e9 >

Subgroups: 590 in 190 conjugacy classes, 75 normal (51 characteristic)
C1, C2, C2, C4, C22, C22, C5, C2xC4, C2xC4, C23, C23, C23, C10, C10, C42, C22:C4, C22:C4, C4:C4, C22xC4, C22xC4, C24, Dic5, C20, C2xC10, C2xC10, C2.C42, C2xC42, C2xC22:C4, C2xC22:C4, C2xC4:C4, C2xDic5, C2xDic5, C2xC20, C2xC20, C22xC10, C22xC10, C22xC10, C24.C22, C4xDic5, C4:Dic5, C23.D5, C5xC22:C4, C22xDic5, C22xC20, C23xC10, C10.10C42, C2xC4xDic5, C2xC4:Dic5, C2xC23.D5, C10xC22:C4, C24.8D10
Quotients: C1, C2, C4, C22, C2xC4, D4, C23, D5, C22xC4, C2xD4, C4oD4, Dic5, D10, C42:C2, C4xD4, C4:D4, C22.D4, C4.4D4, C42:2C2, C2xDic5, C22xD5, C24.C22, C4oD20, D4xD5, D4:2D5, C22xDic5, C23.D10, D10.12D4, D10:D4, Dic5.5D4, C23.21D10, D4xDic5, C24.8D10

Smallest permutation representation of C24.8D10
On 160 points
Generators in S160
(2 140)(4 122)(6 124)(8 126)(10 128)(12 130)(14 132)(16 134)(18 136)(20 138)(21 82)(22 32)(23 84)(24 34)(25 86)(26 36)(27 88)(28 38)(29 90)(30 40)(31 92)(33 94)(35 96)(37 98)(39 100)(41 51)(42 115)(43 53)(44 117)(45 55)(46 119)(47 57)(48 101)(49 59)(50 103)(52 105)(54 107)(56 109)(58 111)(60 113)(61 146)(63 148)(65 150)(67 152)(69 154)(71 156)(73 158)(75 160)(77 142)(79 144)(81 91)(83 93)(85 95)(87 97)(89 99)(102 112)(104 114)(106 116)(108 118)(110 120)
(1 151)(2 152)(3 153)(4 154)(5 155)(6 156)(7 157)(8 158)(9 159)(10 160)(11 141)(12 142)(13 143)(14 144)(15 145)(16 146)(17 147)(18 148)(19 149)(20 150)(21 56)(22 57)(23 58)(24 59)(25 60)(26 41)(27 42)(28 43)(29 44)(30 45)(31 46)(32 47)(33 48)(34 49)(35 50)(36 51)(37 52)(38 53)(39 54)(40 55)(61 134)(62 135)(63 136)(64 137)(65 138)(66 139)(67 140)(68 121)(69 122)(70 123)(71 124)(72 125)(73 126)(74 127)(75 128)(76 129)(77 130)(78 131)(79 132)(80 133)(81 108)(82 109)(83 110)(84 111)(85 112)(86 113)(87 114)(88 115)(89 116)(90 117)(91 118)(92 119)(93 120)(94 101)(95 102)(96 103)(97 104)(98 105)(99 106)(100 107)
(1 11)(2 12)(3 13)(4 14)(5 15)(6 16)(7 17)(8 18)(9 19)(10 20)(21 31)(22 32)(23 33)(24 34)(25 35)(26 36)(27 37)(28 38)(29 39)(30 40)(41 51)(42 52)(43 53)(44 54)(45 55)(46 56)(47 57)(48 58)(49 59)(50 60)(61 71)(62 72)(63 73)(64 74)(65 75)(66 76)(67 77)(68 78)(69 79)(70 80)(81 91)(82 92)(83 93)(84 94)(85 95)(86 96)(87 97)(88 98)(89 99)(90 100)(101 111)(102 112)(103 113)(104 114)(105 115)(106 116)(107 117)(108 118)(109 119)(110 120)(121 131)(122 132)(123 133)(124 134)(125 135)(126 136)(127 137)(128 138)(129 139)(130 140)(141 151)(142 152)(143 153)(144 154)(145 155)(146 156)(147 157)(148 158)(149 159)(150 160)
(1 139)(2 140)(3 121)(4 122)(5 123)(6 124)(7 125)(8 126)(9 127)(10 128)(11 129)(12 130)(13 131)(14 132)(15 133)(16 134)(17 135)(18 136)(19 137)(20 138)(21 92)(22 93)(23 94)(24 95)(25 96)(26 97)(27 98)(28 99)(29 100)(30 81)(31 82)(32 83)(33 84)(34 85)(35 86)(36 87)(37 88)(38 89)(39 90)(40 91)(41 104)(42 105)(43 106)(44 107)(45 108)(46 109)(47 110)(48 111)(49 112)(50 113)(51 114)(52 115)(53 116)(54 117)(55 118)(56 119)(57 120)(58 101)(59 102)(60 103)(61 146)(62 147)(63 148)(64 149)(65 150)(66 151)(67 152)(68 153)(69 154)(70 155)(71 156)(72 157)(73 158)(74 159)(75 160)(76 141)(77 142)(78 143)(79 144)(80 145)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 23 141 48)(2 32 142 57)(3 21 143 46)(4 30 144 55)(5 39 145 44)(6 28 146 53)(7 37 147 42)(8 26 148 51)(9 35 149 60)(10 24 150 49)(11 33 151 58)(12 22 152 47)(13 31 153 56)(14 40 154 45)(15 29 155 54)(16 38 156 43)(17 27 157 52)(18 36 158 41)(19 25 159 50)(20 34 160 59)(61 116 124 99)(62 105 125 88)(63 114 126 97)(64 103 127 86)(65 112 128 95)(66 101 129 84)(67 110 130 93)(68 119 131 82)(69 108 132 91)(70 117 133 100)(71 106 134 89)(72 115 135 98)(73 104 136 87)(74 113 137 96)(75 102 138 85)(76 111 139 94)(77 120 140 83)(78 109 121 92)(79 118 122 81)(80 107 123 90)

G:=sub<Sym(160)| (2,140)(4,122)(6,124)(8,126)(10,128)(12,130)(14,132)(16,134)(18,136)(20,138)(21,82)(22,32)(23,84)(24,34)(25,86)(26,36)(27,88)(28,38)(29,90)(30,40)(31,92)(33,94)(35,96)(37,98)(39,100)(41,51)(42,115)(43,53)(44,117)(45,55)(46,119)(47,57)(48,101)(49,59)(50,103)(52,105)(54,107)(56,109)(58,111)(60,113)(61,146)(63,148)(65,150)(67,152)(69,154)(71,156)(73,158)(75,160)(77,142)(79,144)(81,91)(83,93)(85,95)(87,97)(89,99)(102,112)(104,114)(106,116)(108,118)(110,120), (1,151)(2,152)(3,153)(4,154)(5,155)(6,156)(7,157)(8,158)(9,159)(10,160)(11,141)(12,142)(13,143)(14,144)(15,145)(16,146)(17,147)(18,148)(19,149)(20,150)(21,56)(22,57)(23,58)(24,59)(25,60)(26,41)(27,42)(28,43)(29,44)(30,45)(31,46)(32,47)(33,48)(34,49)(35,50)(36,51)(37,52)(38,53)(39,54)(40,55)(61,134)(62,135)(63,136)(64,137)(65,138)(66,139)(67,140)(68,121)(69,122)(70,123)(71,124)(72,125)(73,126)(74,127)(75,128)(76,129)(77,130)(78,131)(79,132)(80,133)(81,108)(82,109)(83,110)(84,111)(85,112)(86,113)(87,114)(88,115)(89,116)(90,117)(91,118)(92,119)(93,120)(94,101)(95,102)(96,103)(97,104)(98,105)(99,106)(100,107), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(61,71)(62,72)(63,73)(64,74)(65,75)(66,76)(67,77)(68,78)(69,79)(70,80)(81,91)(82,92)(83,93)(84,94)(85,95)(86,96)(87,97)(88,98)(89,99)(90,100)(101,111)(102,112)(103,113)(104,114)(105,115)(106,116)(107,117)(108,118)(109,119)(110,120)(121,131)(122,132)(123,133)(124,134)(125,135)(126,136)(127,137)(128,138)(129,139)(130,140)(141,151)(142,152)(143,153)(144,154)(145,155)(146,156)(147,157)(148,158)(149,159)(150,160), (1,139)(2,140)(3,121)(4,122)(5,123)(6,124)(7,125)(8,126)(9,127)(10,128)(11,129)(12,130)(13,131)(14,132)(15,133)(16,134)(17,135)(18,136)(19,137)(20,138)(21,92)(22,93)(23,94)(24,95)(25,96)(26,97)(27,98)(28,99)(29,100)(30,81)(31,82)(32,83)(33,84)(34,85)(35,86)(36,87)(37,88)(38,89)(39,90)(40,91)(41,104)(42,105)(43,106)(44,107)(45,108)(46,109)(47,110)(48,111)(49,112)(50,113)(51,114)(52,115)(53,116)(54,117)(55,118)(56,119)(57,120)(58,101)(59,102)(60,103)(61,146)(62,147)(63,148)(64,149)(65,150)(66,151)(67,152)(68,153)(69,154)(70,155)(71,156)(72,157)(73,158)(74,159)(75,160)(76,141)(77,142)(78,143)(79,144)(80,145), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,23,141,48)(2,32,142,57)(3,21,143,46)(4,30,144,55)(5,39,145,44)(6,28,146,53)(7,37,147,42)(8,26,148,51)(9,35,149,60)(10,24,150,49)(11,33,151,58)(12,22,152,47)(13,31,153,56)(14,40,154,45)(15,29,155,54)(16,38,156,43)(17,27,157,52)(18,36,158,41)(19,25,159,50)(20,34,160,59)(61,116,124,99)(62,105,125,88)(63,114,126,97)(64,103,127,86)(65,112,128,95)(66,101,129,84)(67,110,130,93)(68,119,131,82)(69,108,132,91)(70,117,133,100)(71,106,134,89)(72,115,135,98)(73,104,136,87)(74,113,137,96)(75,102,138,85)(76,111,139,94)(77,120,140,83)(78,109,121,92)(79,118,122,81)(80,107,123,90)>;

G:=Group( (2,140)(4,122)(6,124)(8,126)(10,128)(12,130)(14,132)(16,134)(18,136)(20,138)(21,82)(22,32)(23,84)(24,34)(25,86)(26,36)(27,88)(28,38)(29,90)(30,40)(31,92)(33,94)(35,96)(37,98)(39,100)(41,51)(42,115)(43,53)(44,117)(45,55)(46,119)(47,57)(48,101)(49,59)(50,103)(52,105)(54,107)(56,109)(58,111)(60,113)(61,146)(63,148)(65,150)(67,152)(69,154)(71,156)(73,158)(75,160)(77,142)(79,144)(81,91)(83,93)(85,95)(87,97)(89,99)(102,112)(104,114)(106,116)(108,118)(110,120), (1,151)(2,152)(3,153)(4,154)(5,155)(6,156)(7,157)(8,158)(9,159)(10,160)(11,141)(12,142)(13,143)(14,144)(15,145)(16,146)(17,147)(18,148)(19,149)(20,150)(21,56)(22,57)(23,58)(24,59)(25,60)(26,41)(27,42)(28,43)(29,44)(30,45)(31,46)(32,47)(33,48)(34,49)(35,50)(36,51)(37,52)(38,53)(39,54)(40,55)(61,134)(62,135)(63,136)(64,137)(65,138)(66,139)(67,140)(68,121)(69,122)(70,123)(71,124)(72,125)(73,126)(74,127)(75,128)(76,129)(77,130)(78,131)(79,132)(80,133)(81,108)(82,109)(83,110)(84,111)(85,112)(86,113)(87,114)(88,115)(89,116)(90,117)(91,118)(92,119)(93,120)(94,101)(95,102)(96,103)(97,104)(98,105)(99,106)(100,107), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(61,71)(62,72)(63,73)(64,74)(65,75)(66,76)(67,77)(68,78)(69,79)(70,80)(81,91)(82,92)(83,93)(84,94)(85,95)(86,96)(87,97)(88,98)(89,99)(90,100)(101,111)(102,112)(103,113)(104,114)(105,115)(106,116)(107,117)(108,118)(109,119)(110,120)(121,131)(122,132)(123,133)(124,134)(125,135)(126,136)(127,137)(128,138)(129,139)(130,140)(141,151)(142,152)(143,153)(144,154)(145,155)(146,156)(147,157)(148,158)(149,159)(150,160), (1,139)(2,140)(3,121)(4,122)(5,123)(6,124)(7,125)(8,126)(9,127)(10,128)(11,129)(12,130)(13,131)(14,132)(15,133)(16,134)(17,135)(18,136)(19,137)(20,138)(21,92)(22,93)(23,94)(24,95)(25,96)(26,97)(27,98)(28,99)(29,100)(30,81)(31,82)(32,83)(33,84)(34,85)(35,86)(36,87)(37,88)(38,89)(39,90)(40,91)(41,104)(42,105)(43,106)(44,107)(45,108)(46,109)(47,110)(48,111)(49,112)(50,113)(51,114)(52,115)(53,116)(54,117)(55,118)(56,119)(57,120)(58,101)(59,102)(60,103)(61,146)(62,147)(63,148)(64,149)(65,150)(66,151)(67,152)(68,153)(69,154)(70,155)(71,156)(72,157)(73,158)(74,159)(75,160)(76,141)(77,142)(78,143)(79,144)(80,145), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,23,141,48)(2,32,142,57)(3,21,143,46)(4,30,144,55)(5,39,145,44)(6,28,146,53)(7,37,147,42)(8,26,148,51)(9,35,149,60)(10,24,150,49)(11,33,151,58)(12,22,152,47)(13,31,153,56)(14,40,154,45)(15,29,155,54)(16,38,156,43)(17,27,157,52)(18,36,158,41)(19,25,159,50)(20,34,160,59)(61,116,124,99)(62,105,125,88)(63,114,126,97)(64,103,127,86)(65,112,128,95)(66,101,129,84)(67,110,130,93)(68,119,131,82)(69,108,132,91)(70,117,133,100)(71,106,134,89)(72,115,135,98)(73,104,136,87)(74,113,137,96)(75,102,138,85)(76,111,139,94)(77,120,140,83)(78,109,121,92)(79,118,122,81)(80,107,123,90) );

G=PermutationGroup([[(2,140),(4,122),(6,124),(8,126),(10,128),(12,130),(14,132),(16,134),(18,136),(20,138),(21,82),(22,32),(23,84),(24,34),(25,86),(26,36),(27,88),(28,38),(29,90),(30,40),(31,92),(33,94),(35,96),(37,98),(39,100),(41,51),(42,115),(43,53),(44,117),(45,55),(46,119),(47,57),(48,101),(49,59),(50,103),(52,105),(54,107),(56,109),(58,111),(60,113),(61,146),(63,148),(65,150),(67,152),(69,154),(71,156),(73,158),(75,160),(77,142),(79,144),(81,91),(83,93),(85,95),(87,97),(89,99),(102,112),(104,114),(106,116),(108,118),(110,120)], [(1,151),(2,152),(3,153),(4,154),(5,155),(6,156),(7,157),(8,158),(9,159),(10,160),(11,141),(12,142),(13,143),(14,144),(15,145),(16,146),(17,147),(18,148),(19,149),(20,150),(21,56),(22,57),(23,58),(24,59),(25,60),(26,41),(27,42),(28,43),(29,44),(30,45),(31,46),(32,47),(33,48),(34,49),(35,50),(36,51),(37,52),(38,53),(39,54),(40,55),(61,134),(62,135),(63,136),(64,137),(65,138),(66,139),(67,140),(68,121),(69,122),(70,123),(71,124),(72,125),(73,126),(74,127),(75,128),(76,129),(77,130),(78,131),(79,132),(80,133),(81,108),(82,109),(83,110),(84,111),(85,112),(86,113),(87,114),(88,115),(89,116),(90,117),(91,118),(92,119),(93,120),(94,101),(95,102),(96,103),(97,104),(98,105),(99,106),(100,107)], [(1,11),(2,12),(3,13),(4,14),(5,15),(6,16),(7,17),(8,18),(9,19),(10,20),(21,31),(22,32),(23,33),(24,34),(25,35),(26,36),(27,37),(28,38),(29,39),(30,40),(41,51),(42,52),(43,53),(44,54),(45,55),(46,56),(47,57),(48,58),(49,59),(50,60),(61,71),(62,72),(63,73),(64,74),(65,75),(66,76),(67,77),(68,78),(69,79),(70,80),(81,91),(82,92),(83,93),(84,94),(85,95),(86,96),(87,97),(88,98),(89,99),(90,100),(101,111),(102,112),(103,113),(104,114),(105,115),(106,116),(107,117),(108,118),(109,119),(110,120),(121,131),(122,132),(123,133),(124,134),(125,135),(126,136),(127,137),(128,138),(129,139),(130,140),(141,151),(142,152),(143,153),(144,154),(145,155),(146,156),(147,157),(148,158),(149,159),(150,160)], [(1,139),(2,140),(3,121),(4,122),(5,123),(6,124),(7,125),(8,126),(9,127),(10,128),(11,129),(12,130),(13,131),(14,132),(15,133),(16,134),(17,135),(18,136),(19,137),(20,138),(21,92),(22,93),(23,94),(24,95),(25,96),(26,97),(27,98),(28,99),(29,100),(30,81),(31,82),(32,83),(33,84),(34,85),(35,86),(36,87),(37,88),(38,89),(39,90),(40,91),(41,104),(42,105),(43,106),(44,107),(45,108),(46,109),(47,110),(48,111),(49,112),(50,113),(51,114),(52,115),(53,116),(54,117),(55,118),(56,119),(57,120),(58,101),(59,102),(60,103),(61,146),(62,147),(63,148),(64,149),(65,150),(66,151),(67,152),(68,153),(69,154),(70,155),(71,156),(72,157),(73,158),(74,159),(75,160),(76,141),(77,142),(78,143),(79,144),(80,145)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,23,141,48),(2,32,142,57),(3,21,143,46),(4,30,144,55),(5,39,145,44),(6,28,146,53),(7,37,147,42),(8,26,148,51),(9,35,149,60),(10,24,150,49),(11,33,151,58),(12,22,152,47),(13,31,153,56),(14,40,154,45),(15,29,155,54),(16,38,156,43),(17,27,157,52),(18,36,158,41),(19,25,159,50),(20,34,160,59),(61,116,124,99),(62,105,125,88),(63,114,126,97),(64,103,127,86),(65,112,128,95),(66,101,129,84),(67,110,130,93),(68,119,131,82),(69,108,132,91),(70,117,133,100),(71,106,134,89),(72,115,135,98),(73,104,136,87),(74,113,137,96),(75,102,138,85),(76,111,139,94),(77,120,140,83),(78,109,121,92),(79,118,122,81),(80,107,123,90)]])

68 conjugacy classes

class 1 2A···2G2H2I4A4B4C4D4E4F4G···4N4O4P4Q4R5A5B10A···10N10O···10V20A···20P
order12···2224444444···444445510···1010···1020···20
size11···14422224410···1020202020222···24···44···4

68 irreducible representations

dim1111111222222244
type++++++++-+++-
imageC1C2C2C2C2C2C4D4D5C4oD4Dic5D10D10C4oD20D4xD5D4:2D5
kernelC24.8D10C10.10C42C2xC4xDic5C2xC4:Dic5C2xC23.D5C10xC22:C4C5xC22:C4C2xDic5C2xC22:C4C2xC10C22:C4C22xC4C24C22C22C22
# reps12112184288421644

Matrix representation of C24.8D10 in GL6(F41)

100000
0400000
001000
000100
000010
00003140
,
100000
010000
0040000
0004000
0000400
0000040
,
4000000
0400000
001000
000100
0000400
0000040
,
4000000
0400000
001000
000100
000010
000001
,
010000
4000000
000700
0035600
0000210
0000839
,
3200000
0320000
0021300
0032000
00002638
00002015

G:=sub<GL(6,GF(41))| [1,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,31,0,0,0,0,0,40],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,40,0,0,0,0,1,0,0,0,0,0,0,0,0,35,0,0,0,0,7,6,0,0,0,0,0,0,21,8,0,0,0,0,0,39],[32,0,0,0,0,0,0,32,0,0,0,0,0,0,21,3,0,0,0,0,3,20,0,0,0,0,0,0,26,20,0,0,0,0,38,15] >;

C24.8D10 in GAP, Magma, Sage, TeX

C_2^4._8D_{10}
% in TeX

G:=Group("C2^4.8D10");
// GroupNames label

G:=SmallGroup(320,578);
// by ID

G=gap.SmallGroup(320,578);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,56,120,422,387,12550]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=1,e^10=c,f^2=c*b=b*c,a*b=b*a,a*c=c*a,e*a*e^-1=a*d=d*a,f*a*f^-1=a*c*d,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=e^9>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<